Current observations of our universe indicate that the universe is expanding at an accelerating rate. The expansion of the universe will eventually place all galaxies which are not gravitationally bound to the Milky Way beyond our observable horizon (yet I caution that the notion of a horizon is a subtle point and a source of
expanding confusion). Galaxies will cease to be brilliant. The passing of time will see stars exhaust all of their fuel. Stars will cease to shine. Black holes will evaporate due to
Hawking radiation dispersing a bath of dull photons into the universe. Black holes will cease to exist. The universe will cool as it expands to a uniformly frigid temperature. Entropy will be maximized. The universe will be cold, dark, and lonely.
The future history of the universe described above is an implicit result of the standard cosmology accepted today. It is an extrapolation of accepted theory into the distant future. There is good reason to be skeptical of extraordinary predictions which is why the big bang and the past expansion history of the universe is the major focus of cosmology and not predicting the future of the universe. We need to know exactly what happened in the past to understand the reasons for the accelerating expansion (what is dark energy?). The current observations and the 'standard cosmology' I speak of are part of what is known in physics as the concordance model of cosmology. Every peer reviewed research paper that discusses the universe has this one sentence in it that goes something like this (taken from generic research paper on cosmology and extragalactic astrophysics):
Throughout this paper we assume a Friedmann-Lemaître-Robertson-Walker metric with a standard cosmology with ΩM=.3, Ω Λ=.7, H0=70 km s-1 Mpc-1.
Lets break down this generic statement and see what it implies. The
Friedmann-Lemaître-Robertson-Walker metric implies we are assuming a universe which is consistent with a homogeneous isotropic expanding universe, the Ω values are dimensionless energy density parameters which quantify the energy contribution from matter (mostly dark matter, denoted M) and dark energy (denoted Λ), and finally the H
0 value is the Hubble parameter in units of kilometers per second per megaparsec which describes how fast, v, an object at a given distance, d, is moving away from us such that H
0=d/v. The statement effectively means that
the universe is flat (it is conceivably possible that you could travel a very long way in one direction and end up where you started, like what happens if you travel around the earth, but observations indicate that this is not the case so we conclude the universe has no curvature) and the universe is expanding in such a way that the universe will not collapse back down on itself. Thus our best guess is that the universe will keep expanding forever. The consequence of this, and this is the crux here, is that as time moves forward entropy inexorably increases (this is the second law of thermodynamics) to the point that all ordered processes, complex systems, life and semblance of thought is impossible.
If you lived forever it would be hard to avoid the situation where eventually you and your fellow space travelers were huddled around a few dieing stars in a bland galaxy in an exhausted void. There are small stars which are burning today and will be burning in 100 billion years and more stars will form for a while. But eventually, stars really will shut down and cool. You could try to travel to another galaxy, but that would take a long time (if the distance to our neighbor galaxy Andromeda was held constant it would take about 2.5 million years to travel there at the speed of light), and even then there would be few stars and most problematically most other galaxies would have receded beyond our horizon. Where would you want to head in this barren universe? Recent studies of the
entropy of the universe indicate that the majority of the entropy in the universe is actually contributed by super massive black holes. Interestingly gravity is rather unlike most systems in thermodynamics. Generally entropy is increased by say smashing something into many pieces, but for gravity when energy is uniformly distributed gravity is quite low compared to the state where matter has collapsed into stars or to the extreme state of a black hole. There is one more step in producing more entropy which occurs as black holes slowly emit radiation in the form of Hawking radiation. A black hole the mass of the sun would emit Hawking radiation for
2 × 1067 years which is much longer than the current age of the universe at 13.7 × 10
9 years. A super massive black hole of 100 billion solar masses, about the mass of our entire Milky Way galaxy, would emit Hawking radiation for
2 × 10100 years. You could hang out near one of these black holes for a while as a source of energy because the black hole would still be producing entropy. Finally, all the black holes would also evaporate and the universe would consist of a diffuse gas of photons and leptons. Any activity in the universe would be very limited at this point and what did occur would take truly epic time scales.
The concordance cosmology, the theoretical models, and the measured parameters implicitly assume that the end of the universe is cold, dark, and lonely. The universe ending as cold void in which life can no longer be sustained is sometimes known as the Big Chill. At this point there is only speculation, perhaps it is philosophical. The universe may expand again in a secondary inflationary epoch or the vacuum may decay into an even lower energy state. Actually, there are other possible scenarios such as the Big Rip in which dark energy pulls apart the fabric of space through some exponentially increasing expansion. Revisionist history is the best kind of history, so when talking about the future history revisions are always welcome. There may already be information about universe which has been erased that would change our expectations. One example of the universe erasing information is if the radius of curvature of the universe is much greater than the horizon distance then observing this curvature would be like trying perceive the curvature of the earth just by looking at the horizon so as the universe, or earth, expanded observing curvature could more difficult. Paradoxically, conceding that there is information about the universe which has been erased which would indicate an ultimate fate other than the one outlined here also supports the argument that the ultimate fate of the universe is an extremely high entropy state.
Conceding that the universe may not be infinite or that the end is simply cold and lonely is very difficult for some. This theme was explored in
Issac Asimov's story The Last Question in my previous post. In this story man ponders how the heat death of the universe can be avoided. Man asks the greatest computer created how the second law of thermodynamics can be reversed. [spoiler alert] After hundreds of billions of years the computer still cannot answer the humans. Ultimately all of humanities mental facilities from the trillions of humans spread throughout the universe merge their minds with this ultimate computer to from a singular unified mental process. The question is asked again and there is still no answer. Time goes on until space and time cease to exist, however the ultimate mind continues to ponder the question in hyperspace and eventually finds an answer. There is no one or no thing left to report the answer to so the mind decides to show the answer by demonstrating the reversal of entropy. The mind spends another eternity determining how to do this and writing a careful program to execute. Upon execution of the program the mind reverses entropy and thus creates the universe anew.