Cosmology not only probes the absolute mass scale of the neutrino but is a completely independent method to test against. In any case, it is imperative to include an accurate prescription for the neutrino in cosmology, as any failure to do so can bias the other cosmological parameters. A cosmological constraint on the sum of the neutrino masses is primarily a constraint on the relic big bang neutrino density Ων. One can relate this density to the sum of the mass eigenstates ∑mν as given by Ων= ∑mν/(93.14 h2 eV). The direct effects of the neutrinos depend on whether they are relativistic or nonrelativistic and the scale under consideration. Neutrinos have a large thermal velocity as a result of their low mass and subsequently erase their own perturbations on scales smaller than the free streaming length. This subsequently contributes to a suppression of the statistical clustering of galaxies over small scales and can be observed in a galaxy survey. The abundance of neutrinos in the Universe can also have a direct effect on the primary CMB anisotropies if nonrelativistic before the time of decoupling (i.e., when sufficiently massive). However, one of the most clear effects at this epoch is a displacement in the time of matter-radiation equality. All these cosmological effects can be used to impose bounds on the neutrino mass. Previous studies have capitalized on these signatures and have started to place sub eV constraints on the absolute mass scale . We utilize the new Sloan Digital Sky Survey MegaZ luminous red galaxy (LRG) DR7 galaxy clustering data to provide the first photometric galaxy clustering constraint on the neutrino and, combining with the CMB, examine the complementarity of these early- and late-time probes. With an almost comprehensive combination of probes this renders one of the tightest constraints on the neutrinos in cosmology and therefore physics.Cosmological observations provide independent constraints on the neutrino mass scale provided that a few assumptions (a flat universe with Gaussian and adiabatic primordial fluctuations and a constant spectral index for example) can be made. Compared to the prospects of current-to-next generation particle neutrino experiments (like KATRIN) it may be that astronomical surveys of the cosmic microwave background anisotropies or optical surveys of the large scale structure of the Universe will place the tightest constraints on neutrino masses for some time. Continue reading from the excerpt above written by Shaun Thomas, Filipe Abdalla, and Ofer Lahav on their invited viewpoint article in Physical Review Letters (freely available):Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey.
Field of Science
-
-
-
Political pollsters are pretending they know what's happening. They don't.5 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections6 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
Do social crises lead to religious revivals? Nah!8 years ago in Epiphenom
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Upper Bound on Neutrino Masses from Galaxy Surveys
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS